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Materials and Methods 

1. Overview 

This study establishes a framework for mapping the distribution and change of the 

world’s tidal wetlands with satellite image archives and biophysical data. Tidal wetlands in 

our study collectively refer to three of the world’s most extensive intertidal ecosystem types: 

tidal flats, tidal marshes and mangroves (8, 12, 31). These three intertidal ecosystem types are 

regularly inundated throughout the tidal cycle correspond to the IUCN Global Ecosystem 

Typology (32) descriptions for muddy shorelines (typology code MT1.2; hereafter ‘tidal 

flats’), coastal tidal marshes and reedbeds (MFT1.3; hereafter ‘tidal marshes’) and intertidal 

forests and shrublands (MFT1.2; hereafter ‘mangroves’). In this study tidal flats are 

represented as fine to coarse particle-sized sediment and sand dominated ecosystems that are 

regularly inundated throughout the tidal cycle and occur primarily on low-sloping, low 

energy coastlines (9, 33), tidal marshes as salt-tolerant forbs, grasses and shrubs that occur in 

intertidal environments (34), and mangroves as structurally complex intertidal forests that 

occur mainly in warm regions (Figure S1) (35).  

Vague distribution boundaries between intertidal ecosystems present a considerable 

challenge for remote sensing analyses of coastal ecosystems. Remote sensing studies can 

over- or under-estimate the extent of single ecosystems due to continuous ecotones among 

each ecosystem type, the occurrence of complex ecosystem mosaics at a range of spatial 

scales within the intertidal zone, variable vegetation height within vegetated coastal 

ecosystems, limited height development of tree species on some substrates, sparse vegetation 

cover, the dynamic movement of ecotones over time, and varying tidal inundation at the time 

of remote observation. These issues tend to result in gaps or overlaps in independently 

developed maps of coastal ecosystems, limiting their ability to be used for integrated analyses 

of global tidal wetland dynamics. To address this, we developed a three-stage classification 

http://www.global-ecosystems.org/
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workflow for earth observation data that sought to (i) estimate the occurrence of the three 

intertidal ecosystems in a single map class (‘tidal wetlands’) for seven time-steps between 

1999 and 2019 (Stage 1), (ii) detect and classify their change over the full 20-year study 

period (Stage 2), and (iii) classify tidal wetland changes into their component intertidal 

ecosystem type (tidal flats, tidal marsh or mangroves) and identify when the change occurred 

(Stage 3).  

Machine learning classifiers have been transformative for global-scale models of the 

distribution of land cover, largely because of their effectiveness at handling large and 

complex feature sets, ability to be deployed in parallel, and demonstrated high predictive 

performance across a wide range of applied remote sensing analyses (36). They have 

therefore been used to map the extent of several intertidal ecosystems, including tidal flats (9) 

and mangroves (13). For this reason, random forest classifiers were applied at in the three 

stages of our analysis, using training datasets developed for each and a set of multitemporal 

data layers as covariates. The models were applied to coastal areas between 60°N and 60°S. 

To reduce unnecessary analyses within these latitudinal bounds, the analysis was limited to 

the maximum area represented by the following criteria: less than 40-m water depth (37), less 

than 40-m elevation (37), within 5-km of any intertidal ecosystems mapped in existing 

global-scale maps of single ecosystems (9, 13, 15, 38, 39), or less than 5-km to the coastline 

(40). We ran our remote sensing analysis end-to-end in Google Earth Engine (41) and used R 

(42) to conduct model tuning and develop data summaries. Model code is available as 

Supplementary Data S1 and the training data and map data products as Supplementary Data 

S2 and S3. 

2. Covariate data 

The Landsat Thematic Mapper (TM), Enhanced Thematic Mapper + (ETM+) and 

Operational Land Imager (OLI) instruments on Landsat 5‒8 satellites are amongst the most 



important data sources for investigating broad-scale dynamics of the Earth’s ecosystems (43-

45). Landsat Collection-1 At-Surface Reflectance data (46) were used to produce a set of 

time-series covariate layers that formed the basis of the three stages of our modelling 

approach. We collected every Landsat archive image acquired over the study area between 

1999 and 2019 (1,166,385 images), masked cloud and cloud shadow pixels (46), and 

summarized them into cloud-free temporal composite metric layers over seven 3-yearly 

periods (1999‒2001, 2002‒2004, 2005‒2007, 2008‒2010, 2011‒2013, 2014‒2016, 2017‒

2019). Composite metrics are useful for minimizing contamination by cloud, cloud shadow 

and snow, characterizing the extent of tidal influence detectable by satellite sensors, and 

representing diverse aspects of coastal and vegetation dynamics in an efficient manner 

suitable for use in regional to global-scale classification models (9, 26, 47, 48). Analysis 

time-steps were timed with the launch of the Landsat 7 ETM + instrument and were fixed to 

three-year periods (49, 50). This balanced the requirement for data products of sufficient 

temporal resolution to investigate intertidal ecosystem dynamics against the need to use a 

sufficient number of satellite images to generate cloud-free composite metrics across the 

global intertidal area (49, 50). For each three-year time-period, 88 composite metric layers 

were generated from the Landsat Archive data to serve as spectral covariates in the three 

classification models. Pixels where a lack of cloud-free observations precluded change 

classification accounted for only 1.7% of the total mapped area. To promote accurate 

predictions of the occurrence of tidal wetlands (Stage 1) and their component ecosystem 

types (Stage 3), we also developed additional covariate layers of biophysical variables known 

to influence local and global distributions of tidal wetlands (9, 28, 51, 52), including air 

temperature and elevation. The complete list of covariate layers is presented in 

Supplementary Table S1. 

3. Intertidal ecosystem training data 



We developed a globally distributed training dataset for modelling the extent of tidal 

wetlands and their component intertidal ecosystems. This was achieved through visual 

interpretation of high-resolution satellite images available from Google Earth, Bing Maps and 

other mapping platforms (such as Planet Basemaps) in combination with the full set of cloud-

free Landsat composite metrics (Table S1). Typically, pixels included in the training set met 

the following conditions: (i) a clear presence of distinguishing features of each ecosystem 

type, such as mangrove trees, tidally inundated sediments, or marsh vegetation, (ii) located 

along the visible natural coastline where intertidal ecosystems are clearly observable, and (iii) 

the ecosystem was confirmed as present in the reference period (2014‒2016). Where 

possible, other sources of information, including from published studies, coastal atlases and 

publicly available datasets, were used to aid image interpretation. Image analysts also used 

their experience and knowledge of the visual characteristics of each ecosystem type to inform 

their collection of training data and did not include records where there was any uncertainty 

about the ecosystem type or its presence during the reference period. This resulted in a tidal 

wetland training dataset of 23,138 occurrence records annotated with ecosystem type (tidal 

flat, tidal marsh or mangrove). Furthermore, 17,747 occurrence records of non-tidal wetland 

land cover types were collected to enable separation from other land cover types that occur in 

the coastal zone (‘permanent water’ and ‘terrestrial other’; Figure S2). The permanent water 

class included records from deep water and shallow marine ecosystems, including kelp 

forests, seagrass meadows and photic coral reefs. The terrestrial other class included a variety 

of land cover types ranging from agriculture and settlements to sandy shorelines and supra-

littoral coastal ecosystems. Our ground-up compilation of training data, as opposed to the 

sampling of existing publicly available map products, reduces error propagation among 

global map products and enables the inclusion of training data from areas that are unmapped 

in existing global map datasets 



3. Distribution of tidal wetlands 

The Stage 1 random-forest classification model aimed to estimate the global distribution 

of tidal wetlands, formulated as the combined distribution of the three intertidal ecosystem 

types represented in our training set. The ‘tidal wetland’ category comprised the training data 

of the three intertidal ecosystems, with the ‘permanent water’ and ‘terrestrial other’ records 

combined and used as absence data. The covariate layers (Table S1) were sampled for the 

reference time period (2014‒2016) at the location of each record in the training set. We 

sought to reduce model complexity by removing highly correlated covariates, however, 

model testing with the training set indicated that lowest out-of-bag error rates were achieved 

with the full covariate set. Prior to deploying the classification model in Google Earth 

Engine, model hyper-parameters were optimized by exploring a hypergrid search space with 

the training set in R using the package ‘ranger’ (53). The hypergrid search consisted of 240 

simulations with varying parameter values of the number of trees grown, the number of 

covariates sampled at each split, the fraction of observations sampled at each split, and the 

minimum node size. Parameter values deployed in Earth Engine across the full global study 

area were the mean of the top ten models identified by lowest out-of-bag error rate in the 

hypergrid simulation. We predicted the global distribution of tidal wetlands for each of the 

seven time-periods by running random forests in probability mode, which represents the 

agreement of random forest decision trees, and yields per-pixel tidal wetland probability 

layers for each time period (41).  

Owing to similar inundation dynamics, distinguishing low-elevation coastal aquaculture 

from coastal ecosystems remains a key challenge of coastal remote sensing. Initial model 

runs indicated commission error with coastal aquaculture, particularly in Java and Vietnam. 

For this reason, we developed a mask of South-east Asian aquaculture using maps developed 

of this land cover type for the start year of our analysis in 1999 (54). Commission error was 



also reduced by using the global training set to estimate the ecosystem type of each tidal 

wetland pixel above 10-m elevation (52), corresponding to the maximum elevation of these 

ecosystems in our training set, masking those estimated as tidal marsh or tidal flat, as well as 

pixels identified as mangroves that occurred outside of the mangrove habitat layer developed 

by Global Mangrove Watch program (13). After applying these masks, tidal wetland extent 

maps were obtained by applying a threshold of 0.5 to the tidal wetland probability layers and 

then post-processed to a minimum mapping unit of 10 eight-way connected 30×30-m pixels. 

5. Tidal wetland change product  

The overarching aim of our study was to investigate global tidal wetland change over a 

20-year period. Although the Stage 1 tidal wetland extent model was designed to deliver 

extent maps that met stringent quality aspirations, variation in the number of images available 

per region and known limitations of change maps developed from optical remote sensing can 

lead to year-on-year variation in mapped extent related to model error and noise, rather than 

observed changes (55-58). We therefore developed a second classification model to classify 

pixels where image differencing the tidal wetland extent products suggested disturbance 

events may have occurred during the study period (Stage 2).  

We developed an additional global training set for this purpose with a stratified random 

sample of 950 points in disturbance patches identified by differencing the first (1999‒2001) 

and last (2017‒2019) year of the tidal wetland extent products. We used high-resolution 

historical imagery from the Google Earth Pro time-slider and the Landsat composite metrics 

from 1999‒2001 and 2017‒2019 to annotate each training point according to whether loss, 

gain or no change was evident over the 20-year study period. Tidal wetland loss was defined 

as the replacement, at the 30-m pixel scale, of any of the three focal intertidal ecosystems 

with non-intertidal ecosystems. Tidal wetland gain was defined as the establishment of any of 

the three intertidal ecosystems in pixels where they did not occur in 1999. According to these 



definitions, tidal wetland loss and gain training points were included without explicit 

knowledge of specific change drivers, and therefore included records resulting from diverse 

change drivers ranging from direct losses due to reclamation, seawalls, dikes, vegetation 

cutting, mowing, and agricultural development, to die back caused by drivers such as 

pollution, permanent inundation or altered inundation dynamics. In all cases, pixels labelled 

as loss indicated a clear loss of defining features of each ecosystem in imagery between the 

start to the end of the study period while pixels labelled as gain indicated the presence of new 

intertidal ecosystems that were initially mapped as terrestrial (non-tidal) or permanent open 

water. Sample pixels where no change was observed were labeled as no change, and any 

pixels that could not be allocated to a change class due to insufficient historical imagery were 

excluded from the sample set. Stratified random samples were drawn and assessed in blocks 

(~500 points), with a sensitivity analysis performed after each block to determine whether the 

sample size was sufficient to stabilize the overall accuracy estimate. The sensitivity analysis 

involved a bootstrap resampling approach that simulated an increasing number of validation 

samples, recording the variance of the accuracy estimate. Similarly to a previous study (9), 

we determined that there were enough validation samples once the variance stabilized such 

that adding more samples did not significantly change estimates or uncertainty levels. The 

training set was supplemented over model iterations with manually acquired samples in areas 

that represented the most challenging situations of confirmed change. The final training set 

for the change classifier comprised 1,787 points that represented losses (638 points), gains 

(457 points) and no change (692 points) of tidal wetlands over the 20 year study period 

(Figure S3). 

For covariates, we computed the difference in pixel values from our Landsat covariate 

set between the start (1999‒2001) and end of the time series (2017‒2019; 88 covariates; 

Table S2). A covariate layer representing the tidal wetland trend was also included by 



developing a per-pixel linear model fit to the seven per-pixel probability layers of global tidal 

wetland extent (one covariate; Table S2). We applied the change classification model to all 

disturbance patches, yielding a global map of pixels depicting losses and gains of tidal 

wetlands between 1999 and 2019.  

To annotate the type of loss or gain, we applied a third random forest classifier to each 

gain or loss pixel (Stage 3). The intertidal ecosystem type lost or gained was estimated using 

the covariates for the initial (1999‒2001; intertidal ecosystem type in loss patches) and final 

model time steps (2017‒2019; intertidal ecosystem type in gain patches), and the intertidal 

ecosystem training set (n = 17,772 records). The year of loss or gain (‘lossyear’ and 

‘gainyear’) was computed as the last or first time-step that a pixel classified as tidal wetland 

was present in the time series. The change map was post-processed to a minimum mapping 

unit of 10 eight-way connected 30×30-m pixels and removed obvious classification errors. 

The final outputs from the analysis were a set of global maps, at 30-m resolution, depicting 

the estimated global extent of tidal wetlands since 1999, the distribution of tidal wetland 

losses and gains by intertidal ecosystem type, and the time-step that the loss or gain event 

was estimated to have occurred (Figure S4).  

6. Validation and uncertainty estimates 

As noted in many global-scale studies, validation of any land cover maps and their 

change is extremely challenging (26, 48). Errors of omission and commission can arise from 

model misclassification of dynamic features (e.g., turbid water), insufficient representation of 

target features in training data, inappropriate formulation of map classification schemes, 

coarse resolution covariate data that can cause unreliable classifications of features at 

subpixel scales, and the presence of unmapped features that occur at spatial scales smaller 

than the minimum mapping unit (58-60). We followed convention and employed 

independent, high spatial resolution satellite data that matched the temporal span of our 



products to validate the model outputs. Here, we leveraged the growing archive of historical 

high-resolution imagery available in Google Earth Pro and visualizations of Landsat Archive 

data to evaluate the accuracy of the tidal wetland extent map (2017‒2019) and of the change 

product (1999‒2019). For each validation exercise, we used established practices for 

assessments of land cover and land cover change to generate validation sets and used these to 

independently quantify map error and bias of our map products (57, 59, 61, 62). We ensured 

sufficient sample size of the two validation sets with sensitivity analyses to identify the point 

at which further samples in the validation set would not alter accuracy results outside of a 

95% confidence interval (9, 63). This process yielded two validation sets developed from 

stratified random sampling, (i) the extent validation set, consisting of map classes ‘tidal 

wetland’ and ‘other’ (n =1,359 validation points; Figure S5) and (ii) the change validation set 

of map classes ‘stable’, ‘gain’ and ‘loss’(n = 3,060 validation points; Figure S6).  

To independently annotate validation points in the two validation sets, we developed an 

online accuracy assessment application in Google Earth Engine (41) that enabled an 

experienced analyst to concurrently view a relevant set of up to four images for each 

validation sample. Images available to the analyst included a subset of the time-series 

Landsat covariates visualized as the Near-Infrared Band, a true color composite, a false color 

composite, and the standard deviation of the Normalized Difference Water Index (NDWI; 

64), the Modified Normalized Difference Water Index (MNDWI; 65) and the Automated 

Water Extraction Index (AWEI; 66) over the 2017‒2019 -year period. The analyst also used 

Google Earth Pro (including the time-slider function), Bing Maps, and any other information 

source, including map figures in published papers that enabled an independent assessment of 

each validation sample. 

We used the validation datasets to calculate standard map accuracy metrics, and used 

newly developed resampling protocols that been shown to be effective for classification 



analyses of vegetation distributions (67) and coastal ecosystem extents (9) to estimate map 

accuracies and confidence intervals. Bootstrapping was performed by resampling the 

validation samples using 1000 iterations, taking the mean of the sampling distribution as the 

reported accuracy value and the 0.025 and 0.975 percentiles of the sampling distribution as 

the 95% confidence interval. Bootstrapping routines yielded accuracy estimates (mean and 

95% confidence interval) for the tidal wetland extent and change products (Tables S5-S8). 

Traditionally, uncertainty estimates are generated via parametric methods that yield 

symmetrical confidence intervals around accuracy and area estimates. However, maps 

derived from remote sensing classifications tend to have uneven omission and commission 

error due to factors including covariate data quality (such as arising from cloud or smoke 

haze), sensitivity to tidal dynamics, different spectral similarities among classes, 

spatiotemporal variation in land cover change, and other uncertainties related to model 

performance (57, 58, 61, 62, 67, 68). Our validation results indicated asymmetry between 

omission and commission error (Tables S5-S8). To allow propagation of this asymmetry into 

our estimates of global extent, we used the 95% interval on the resampled distribution of 

omission and commission errors to estimate the upper and lower bounds for the area 

estimates of the tidal wetland class, such that:  

 

𝑎𝑟𝑒𝑎𝑖 𝟗𝟓%𝑪𝑰𝑙𝑜𝑤𝑒𝑟 = 𝑎𝑟𝑒𝑎𝑖 − (𝑎𝑟𝑒𝑎𝑖 ∗  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95 ) 

𝑎𝑟𝑒𝑎𝑖 𝟗𝟓%𝑪𝑰𝑢𝑝𝑝𝑒𝑟 = 𝑎𝑟𝑒𝑎𝑖 + (𝑎𝑟𝑒𝑎𝑖 ∗ 𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95) 

 

where 𝑎𝑟𝑒𝑎𝑖 is the mapped area value for the tidal wetland class i, and 𝑷95 is the 95% 

percentile of the commission/omission error corresponding to tidal wetland class i. 

Calculating confidence intervals in this manner can result in uneven intervals, but this is a 



more objective representation of uncertainty for end-users given known asymmetry in 

commission and omission errors in the map products. 

 We calculated confidence intervals for the loss and gain estimates for each intertidal 

ecosystem class using a similar approach, except that the error was multiplicative between the 

ecosystem class and the change class. For loss estimates, 

  

𝑙𝑜𝑠𝑠𝑖  𝟗𝟓%𝑪𝑰𝑙𝑜𝑤𝑒𝑟 = 𝑙𝑜𝑠𝑠𝑖 −  (𝑙𝑜𝑠𝑠𝑖 ∗  𝑙𝑜𝑤𝑒𝑟𝑖,𝑙𝑜𝑠𝑠) 

𝑙𝑜𝑠𝑠𝑖 𝟗𝟓%𝑪𝑰𝑢𝑝𝑝𝑒𝑟 = 𝑙𝑜𝑠𝑠𝑖 +  (𝑙𝑜𝑠𝑠𝑖 ∗  𝑢𝑝𝑝𝑒𝑟𝑖,𝑙𝑜𝑠𝑠) 

 

where 𝑙𝑜𝑠𝑠𝑖 is the mapped area estimate of class i (one of mangrove, tidal marsh or tidal flat) 

intersected with the loss class in the change product, and 

 

𝑙𝑜𝑤𝑒𝑟𝑖,𝑙𝑜𝑠𝑠 =  (1 −  ((1 −  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95,𝑖) ∗ (1 − 𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95,𝑙𝑜𝑠𝑠))) 

𝑢𝑝𝑝𝑒𝑟𝑖,𝑙𝑜𝑠𝑠 =  (1 −  ((1 −  𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95,𝑖) ∗ (1 − 𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95,𝑙𝑜𝑠𝑠))) 

 

where 𝑷95,𝑖 is the 95th percentile of the commission/omission error for the intertidal 

ecosystem class i, and 𝑷95,𝑙𝑜𝑠𝑠 is the 95th percentile of the commission error for the loss class 

in the change product. The same process was applied for the gain estimates (i.e., replacing 

loss with gain above). Although this approach considerably widens confidence intervals in 

derived area estimates, particularly for change estimates of individual ecosystem types, it 

reflects the dynamic nature of tidal wetlands and the complexities of detecting their change. 

7. Tidal wetland analysis. 

We estimated the area of the tidal wetland extent and change products and summarized 

the results at several spatial scales, including global, continental, by country (69) (Table S3), 



and for particular regions of interest, such as the world’s 100 largest deltas (19) and marine 

ecoregions (70). To investigate the extent of transitions among ecosystems, we also estimated 

the area of tidal wetlands that changed from one ecosystem type to another (e.g., from tidal 

flat to mangrove) over the study period (1999‒2019). For example, a pixel within the tidal 

wetland extent map estimated as tidal flat in 1999 but mapped as mangrove in 2019 was 

flagged as a tidal flat to mangrove transition (Table S4). Only pixels that were mapped as 

tidal wetlands at the start and end of the study periods (i.e., not lost or gained over the 20 year 

period) were considered to be transition pixels. 

8. Direct and indirect driver analysis 

The causes of tidal wetland change are complex and are often the result of synergistic, 

interacting and/or multiplicative processes that operate at a range of spatial scales. Several 

studies have attempted to attribute the conversion of mangroves to other land cover types to 

anthropogenic (human-driven) and natural drivers (14,  71). Anthropogenic drivers are 

typically related to direct human activities (including conversion to aquaculture and other 

commodities, urban land uses and infrastructure development). Natural drivers typically 

include erosion, sediment deposition, sea level rise, and other natural coastal processes, 

which may be influenced by climate change and remote human-induced land-use changes 

whose origin may be tens or hundreds of kilometers from the observed change event. These 

drivers of coastal change operate at local to global scales and complex interactions and 

synergies are evident worldwide. Disentangling ‘natural’ and ‘anthropogenic’ drivers of 

change is therefore extremely challenging (72).  

Here we develop a sample-based estimate (26) of the relative contribution of direct 

human activities (such as conversion to aquaculture, agriculture, urban development) and 

indirect drivers (representing the combined effect of climate change, natural coastal 



processes, and other remote drivers of change) to the losses and gains of tidal wetlands that 

were detected by our remote sensing analysis. For this, a global weighted probability sample 

over the tidal wetland change data was developed to estimate the proportion of direct and 

indirect drivers on the following tidal wetland change dynamics: 

(i) Tidal flat gain; 

(ii) Tidal flat loss; 

(iii) Tidal marsh gain; 

(iv) Tidal marsh loss; 

(v) Mangrove gain; and 

(vi) Mangrove loss. 

For each change dynamic, we sampled 250 3 × 3 kilometer grid cells with a weighted 

probability proportional to the area of tidal wetland change for the corresponding change 

dynamic detected within each grid cell. Within each sampled grid cell, we randomly sampled 

a loss or gain pixel (30-m) that matched the sampled change dynamic of the grid cell (e.g., 

tidal marsh gain). For each sampled pixel, we created polygon features representing the 

boundary of the pixel (30-m) for high-resolution image interpretation and an image chip 

boundary an order of magnitude larger (300-m) for scale reference (Figure S8).  

We imported the pixel boundaries into Google Earth Pro and used high-resolution 

images and the time-slider tool to inspect available high-resolution imagery before, during 

and after the 1999‒2019 study period to assess the drivers of tidal wetland change at the 30-m 

pixel scale. Changes attributed to direct drivers were associated with visible land changes 

such as aquaculture, agriculture, plantations, urban and industrial development, and other 

artificial objects such as coastal infrastructure (bridges and dikes). The impact of indirect 

drivers was assumed where samples could not be attributed to a direct driver of change 

(Figure S8). Samples where clear attribution to the two driver classes was not possible due to 



lack of imagery or uncertainty about tidal wetland change were removed from the sample set. 

The relative contribution of direct and indirect drivers of tidal wetland loss and gain were 

estimated as the proportion of the randomly sampled pixels attributed to the two driver 

categories. 

  



 

Figure S1. 

Representative examples of the three intertidal ecosystem types included in the tidal wetland 

map class. 

  



 

Figure S2. 

The global distribution of the training data collected to train the tidal wetlands classification 

model and classify each pixel to ecosystem type. All training data was collected for the 

reference period 2014‒2016. 

  



 
 

Figure S3. 

The global distribution of the training data (n = 1,727) collected to train the global tidal 

wetland change model for the period 1999‒2019.  

 

  



 

  

Figure S4. 

Example of change detected in tidal wetlands from 1999 to 2019. The figure shows (A) the 

distribution of tidal wetlands (tidal flat, tidal marsh or mangrove) in Malaysia and Singapore, 

centered at approximately 1.4°N, 103.6°E; (B) the loss (red) and gain (blue) data layers. The 

detailed insets show a new area of tidal wetland caused by sediment deposition, by gain type 

(C) and gain year (D); and (E) detailed inset of loss by deforestation for an industrial port 

development, showing loss type (E) and loss year (F). 

  



 

 

 

Figure S5. 

The validation samples (n = 1359) used to assess the accuracy of the tidal wetland extent 

product. 

  



 

 

 

Figure S6. 

The validation samples (n = 3060) used to assess the accuracy of the global tidal wetland 

change product.  

  



 
 

Figure S7. 

The driver annotation samples used to assess the relative contribution of direct versus indirect 

drivers on observed losses and gains of tidal wetlands (n = 1500). The figure shows samples 

of observed change stratified by ecosystem type for tidal wetland gains (A) and losses (B). 

  



 

 

Figure S8. 

Examples of direct and indirect drivers of tidal wetland loss and gain. Each row of images 

from Google Earth Pro indicates an intertidal ecosystem type (mangrove, top; tidal flat, 

middle; tidal marsh, bottom) and column by direct gain (A, E, I), direct loss (B, F, J), indirect 

gain (C, G, K) and indirect loss (D, H, L). Yellow squares are 30 x 30-m pixels used to 

annotate driver type and red squares are 300 x 300-m scale references.  

  



 

Figure S9. 

The contribution of direct and indirect drivers to the observed tidal wetland change. The 

distribution of the weighted samples used in image interpretation to annotate drivers of gain 

(A) and loss (B). (C) The proportion of samples attributed to direct and indirect losses per 

continent. Numbers in each bar indicate the number of samples from the weighted probability 

sample used to attribute drivers of change.  

  



Table S1. 

Datasets used in the global intertidal extent classification models. Each random forest model 

used per-pixel information from these covariate layers to classify each pixel as tidal wetland 

or not and change pixels as mangrove, tidal marsh or tidal flats. Four variables in the 

classification models were static across all years of the time series (elevation, slope, aspect 

and latitude). 

 

Raw Input 

Data 

Variables Reducers applied per 

3-year period 

No. covariate 

layers 

per time 

period 

Produced 

for each 

time period 

Source 

(web link) 

ALOS 

World 3D - 

30m version 

2.2 

(AW3D30) 

Aspect 

Elevation 

Slope 

N/A 3 No JAXA1 

Landsat 

Collection-1 

At-Surface 

Reflectance 

Automated Water 

Extraction Index 

(AWEI) 

Enhanced Vegetation 

Index (EVI) 

Modified Normalized 

Difference Water 

Index (MNDWI) 

Normalized 

Difference Water 

Index (NDVI) 

Normalized 

Difference Water 

Index (NDWI) 

Minimum 

Maximum 

Standard Deviation 

Median 

10th Percentile 

25th Percentile 

50th Percentile 

75th Percentile 

90th Percentile 

0‒10 Interval Mean 

10‒25 Interval Mean 

25‒50 Interval Mean 

50‒75 Interval Mean 

75‒90 Interval Mean 

90‒100 Interval Mean 

10‒90 Interval Mean 

25‒75 Interval Mean 

85 Yes USGS2 

Green band 

Near Infrared band 

(NIR) 

Short-wave Infrared 

band (SWIR) 

10‒90 Interval Mean 3 Yes USGS2 

Latitude Latitude N/A 1 No Developed 

by authors 

in Earth 

Engine 

Minimum 

Temperature 

(ERA5 

ECMWF) 

Minimum 

Temperature 

Minimum 1 Yes Copernicus 

Climate 

Data Store3 

1 http://www.eorc.jaxa.jp/ALOS/en/aw3d30/  
2

 https://www.usgs.gov/media/files/landsat-collection-1-level-1-product-definition 
3

 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels  

http://www.eorc.jaxa.jp/ALOS/en/aw3d30/
https://www.usgs.gov/media/files/landsat-collection-1-level-1-product-definition
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels


Table S2. 

Covariate data inputs used in the tidal wetland change random forest classification model. 

 

Raw Input Data Variables Reducers applied 

per 3-year period 

Processing 

for change 

analysis 

No. 

covariate 

layers 

in intertidal 

ecosystem 

change 

classification 

model 

Linear trend of 

tidal wetland 

probability layers 

(representing 

agreement among 

random forest 

trees for binary 

tidal wetland 

class) 

Random forest 

probability 

layer of tidal 

wetland extent 

(result of Stage 

1 analysis) 

N/A Per-pixel 

linear model 

of 7 time-

series 

random 

forest 

probability 

layers 

1 

Landsat 

Collection-1 At-

Surface 

Reflectance 

Automated 

Water 

Extraction 

Index (AWEI) 

Enhanced 

Vegetation 

Index (EVI) 

Modified 

Normalized 

Difference 

Water Index 

(MNDWI) 

Normalized 

Difference 

Water Index 

(NDVI) 

Normalized 

Difference 

Water Index 

(NDWI) 

Minimum 

Maximum 

Standard Deviation 

Median 

10th Percentile 

25th Percentile 

50th Percentile 

75th Percentile 

90th Percentile 

0‒10 Interval Mean 

10‒25 Interval 

Mean 

25‒50 Interval 

Mean 

50‒75 Interval 

Mean 

75‒90 Interval 

Mean 

90‒100 Interval 

Mean 

10‒90 Interval 

Mean 

25‒75 Interval 

Mean 

Difference 

between 

1999-2001 

and 2017-

2019 pixel 

values 

85 

Green band 

Near Infrared band 

(NIR) 

10‒90 Interval 

Mean 

Difference 

between 

1999-2001 

3 



Short-wave 

Infrared band 

(SWIR) 

and 2017-

2019 pixel 

values 

 

  



Table S3. 

Global, continental and national summaries of tidal wetland loss and gain between 1999 and 

2019. Note that only countries that contribute ≥ 0.1% of global net change are included in this 

table. 

 

Unit Loss 

area 

(km2) 

Gain 

area 

(km2) 

Net 

change 

(km2) 

Total 

tidal 

wetland 

change 

area 

(km2) 

Contribution 

to global net 

change (%) 

Loss 

to 

Gain 

Ratio 

GLOBAL -13656 9698 -3958 23355 100 1.4 

ASIA -7836 4905 -2931 12741 74.1 1.6 

NORTH AMERICA -1512 1103 -409 2615 10.3 1.4 

AFRICA -1075 684 -390 1759 9.9 1.6 

SOUTH AMERICA -1777 1493 -284 3269 7.2 1.2 

OCEANIA -720 563 -157 1283 4 1.3 

EUROPE -737 951 214 1688 -5.4 0.8 

Indonesia, Republic of -2198 772 -1426 2970 36 2.9 

China, People's Republic of -2246 1433 -813 3679 20.6 1.6 

Myanmar, Union of -896 421 -475 1317 12 2.1 

Brazil, Federative Republic of -1140 828 -312 1969 7.9 1.4 

Vietnam, Socialist Republic of -347 144 -203 490 5.1 2.4 

Cuba, Republic of -264 70 -193 334 4.9 3.8 

United States of America -843 668 -174 1511 4.4 1.3 

Nigeria, Federal Republic of -185 27 -158 212 4 6.9 

Malaysia -290 148 -142 437 3.6 2 

Guinea, Republic of -93 22 -70 115 1.8 4.1 

Papua New Guinea, Independent 

State of -214 148 -66 363 1.7 1.4 

Korea, Democratic People's 

Republic of -129 79 -50 208 1.3 1.6 

Guyana, Co-operative Republic of -92 45 -47 137 1.2 2 

Marshall Islands, Republic of the -42 1 -41 43 1 41.8 

Bahamas, Commonwealth of the -67 32 -35 99 0.9 2.1 

Ghana, Republic of -34 3 -32 37 0.8 13 

Saudi Arabia, Kingdom of -36 7 -29 43 0.7 4.8 

Mozambique, Republic of -202 176 -26 378 0.7 1.1 

Thailand, Kingdom of -89 64 -24 153 0.6 1.4 

Guinea-Bissau, Republic of -85 61 -24 146 0.6 1.4 

Australia, Commonwealth of -380 357 -23 737 0.6 1.1 

Colombia, Republic of -135 113 -22 249 0.6 1.2 

Qatar, State of -22 1 -22 23 0.5 38.6 

Sierra Leone, Republic of -22 2 -20 24 0.5 8.9 

Madagascar, Republic of -217 198 -19 414 0.5 1.1 

Pakistan, Islamic Republic of -97 79 -18 176 0.5 1.2 



New Zealand -47 30 -17 76 0.4 1.6 

Nicaragua, Republic of -34 19 -15 54 0.4 1.8 

Egypt, Arab Republic of -77 63 -13 140 0.3 1.2 

Tunisia, Tunisian Republic -20 7 -13 27 0.3 2.7 

South Africa, Republic of -32 21 -11 53 0.3 1.6 

Cambodia, Kingdom of -16 6 -10 22 0.3 2.6 

Bahrain, Kingdom of -9 0 -9 9 0.2 25.2 

Honduras, Republic of -24 15 -8 39 0.2 1.5 

Samoa, Independent State of -7 0 -7 8 0.2 33 

Peru, Republic of -20 14 -7 34 0.2 1.5 

Somalia, Somali Republic -7 2 -6 9 0.1 4.8 

Italy, Italian Republic -20 14 -6 34 0.1 1.4 

Brunei Darussalam -6 1 -5 7 0.1 8.2 

Fiji, Republic of the Fiji Islands -13 7 -5 20 0.1 1.7 

Gabon, Gabonese Republic -9 4 -5 13 0.1 2 

Belize -11 7 -4 18 0.1 1.7 

Jamaica -6 2 -4 8 0.1 2.6 

Sweden, Kingdom of -5 1 -4 6 0.1 4.1 

Cameroon, Republic of -12 9 -4 21 0.1 1.4 

Liberia, Republic of -4 1 -3 4 0.1 6.7 

Iraq, Republic of -5 2 -3 7 0.1 2.3 

Haiti, Republic of -10 7 -3 17 0.1 1.4 

Dominican Republic -6 8 2 13 -0.1 0.7 

Trinidad and Tobago, Republic of -1 4 2 5 -0.1 0.4 

Libyan Arab Jamahiriya -3 5 2 8 -0.1 0.6 

Kiribati, Republic of 0 3 2 3 -0.1 0.2 

Ireland -11 14 2 25 -0.1 0.8 

Japan -25 28 3 53 -0.1 0.9 

Mauritania, Islamic Republic of -1 4 3 6 -0.1 0.3 

Taiwan -7 10 3 17 -0.1 0.7 

Turkey, Republic of -31 34 3 65 -0.1 0.9 

Montenegro, Republic of -1 5 3 6 -0.1 0.3 

Costa Rica, Republic of -10 13 4 23 -0.1 0.7 

Mexico, United Mexican States -205 210 4 415 -0.1 1 

Ecuador, Republic of -34 39 6 73 -0.1 0.9 

Kuwait, State of -6 14 7 20 -0.2 0.5 

Cyprus, Republic of 0 9 8 9 -0.2 0 

France, French Republic -168 178 9 346 -0.2 0.9 

Korea, Republic of -121 133 12 255 -0.3 0.9 

Tanzania, United Republic of -27 40 13 67 -0.3 0.7 

Netherlands, Kingdom of the -61 75 14 136 -0.4 0.8 

Panama, Republic of -21 38 16 59 -0.4 0.6 

United Kingdom of Great Britain 

& Northern Ireland -124 146 22 270 -0.6 0.8 

Venezuela, Bolivarian Republic of -129 154 25 282 -0.6 0.8 



Romania -6 31 25 38 -0.6 0.2 

Ukraine -25 51 27 76 -0.7 0.5 

Suriname, Republic of -101 135 35 236 -0.9 0.7 

Argentina, Argentine Republic -89 125 37 214 -0.9 0.7 

Russian Federation -225 274 49 500 -1.2 0.8 

Germany, Federal Republic of -120 212 92 332 -2.3 0.6 

Bangladesh, People's Republic of -595 709 114 1304 -2.9 0.8 

Philippines, Republic of the -80 208 128 287 -3.2 0.4 

 

 

  



Table S4. 

Summary of tidal wetland pixels that transitioned from one intertidal ecosystem type to 

another between 1999 and 2019. 

 

 

Transition Type Area (km2) 

Percent of total 

transition area 

(%) 

Tidal marsh to tidal flat 643.0 9.7 

Tidal marsh to mangrove 910.3 13.7 

Tidal flat to tidal marsh 1902.1 28.6 

Tidal flat to mangrove 1779.4 26.7 

Mangrove to tidal flat 552.2 8.3 

Mangrove to tidal marsh 865.2 13.0 

Total transition pixels 6652.3 100.0 

 

 

  



Table S5. 

Class accuracy results for the global tidal wetland classification model based on validation 

sample points over the mapped area (n = 1359). 

 

 
Reference 

Other 
Tidal 

wetland 

Mapped 

Other 673 8 

Tidal 

wetland 191 487 

 

  



Table S6. 

Quantitative accuracy assessment results for the global tidal wetland classification model 

based on validation sample points over the mapped area (n = 1359). Quantitative accuracy 

assessments involved bootstrapping the validation samples (n = 1000 iterations), with the 

mean of the sampling distribution as the reported accuracy estimate and the 0.025 and 0.975 

percentiles of the sampling distribution as the 95% confidence interval. 

 

Error 
Estimate 

95% Confidence 

Interval 

 Lower Upper 

Overall accuracy 0.854 0.836 0.871 

Other (commission) 0.988 0.979 0.996 

Other (omission) 0.779 0.758 0.801 

Tidal wetland (commission) 0.719 0.684 0.754 

Tidal wetland (omission) 0.984 0.972 0.994 

 

  



Table S7. 

Class accuracy results for the global intertidal change classification model based on 

validation sample points over the mapped area (n = 3059). 

 

 

Reference 

Loss Stable Gain 

Mapped 

Loss 143 65 11 

Stable 26 477 107 

Gain 6 57 86 

 

  



Table S8. 

Quantitative accuracy assessment results for the global intertidal change classification model 

based on validation sample points over the mapped area (n = 3059). Quantitative accuracy 

assessments involved bootstrapping the validation samples (n = 1000 iterations), with the 

mean of the sampling distribution as the reported accuracy estimate and the 0.025 and 0.975 

percentiles of the sampling distribution as the 95% confidence interval. 

 

Error Estimate 

95% Confidence 

Interval 

Lower Upper 

Overall accuracy 0.722 0.696 0.751 

Loss (commission) 0.652 0.589 0.712 

Loss (omission) 0.817 0.766 0.871 

No change 

(commission) 
0.782 0.748 0.815 

No change (omission) 0.796 0.773 0.820 

Gain (commission) 0.579 0.503 0.658 

Gain (omission) 0.423 0.374 0.473 

 

  



Table S9. 

The proportion of observed tidal wetland changes attributed to direct drivers at the 30-m pixel 

scale. Each random sample of tidal wetland change was assessed using high-resolution time-

series images available in Google Earth Pro. Direct drivers included changes due to land 

changes such as aquaculture, agriculture, plantations, urban and industrial development, and 

other artificial objects such as coastal infrastructure (bridges and dikes). Indirect drivers of 

change were not directly observable in high-resolution time-series images and include the 

effects of natural coastal processes, climate change, and remote drivers of change such as 

change in catchment sediment flux. Samples that could not be allocated to a direct or indirect 

driver due to lack of high-resolution imagery or uncertainty about tidal wetland change were 

excluded from the analysis.  

 

Change type 
No. 

Direct 

No.  

Indirect 
SE 

Direct  

(%) 

n 

(sampled) 

n  

(excluded) 

n 

(annotated) 

Mangrove gain 17 208 3.964 8 250 25 225 

Mangrove loss 110 110 7.416 50 250 30 220 

Tidal marsh gain 68 155 6.875 30 250 27 223 

Tidal marsh loss 47 169 6.064 22 250 34 216 

Tidal flat gain 7 201 2.601 3 250 42 208 

Tidal flat loss 105 134 7.673 44 250 11 239 

TIDAL WETLAND GAIN 92 564 8.894 14 750 94 656 

TIDAL WETLAND LOSS 262 413 12.661 39 750 75 675 

 

  



Table S10. 

Attribution of observed changes to direct or indirect drivers by continent. The contribution of 

direct and indirect drivers was estimated as the proportion of a global weighted probability 

sample of observed changes to the direct driver class (% direct).  

 

Continent 

Tidal wetland Mangrove Tidal marsh Tidal flats 

Loss 

(% 

direct) 

Gain 

(% 

direct) 

Loss 

(% 

direct) 

Gain  

(% 

direct) 

Loss  

(% 

direct) 

Gain  

(% 

direct) 

Loss  

(% 

direct) 

Gain  

(% 

direct) 

Africa 27 3 20 5 50 0 15 0 

Asia 68 23 75 13 69 59 62 5 

Europe 28 12 0 0 38 17 7 5 

North 

America 9 11 18 0 8 19 0 4 

Oceania 0 0 0 0 0 0 0 0 

South 

America 2 0 3 0 0 0 0 0 
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